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Vortex-in-Cell Analysis of Wing Wake Roll-Up
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A vortex-in-cell (VIC) method was coupled with a wing vortex-lattice model to compute steady-state wake
roll-up. The vorticity concentrated on the wing and wake vortex segments is distributed to a Cartesian grid
through the application of a spreading function. A sub vortex technique is introduced to refine the wake de-
scription without altering the number of wing panels. The velocity field induced by the spread vorticity is
computed using an infinite domain fast Poisson solver. Interpolation provides velocities at any point inside the
grid. The VIC method is used to compute velocities for a wake relaxation procedure and to correct wing panel
circulations. The iterative method developed can be applied to configurations with several wings. The method
was tested for various one- and two-wing problems and compared with results from experiments and from other
theories with very good agreement. Detailed descriptions for wake geometry and accurate load distributions
were obtained, even for cases where wakes intercepted wings directly.

Nomenclature
[AIC] = influence coefficient matrix
AR = aspect ratio
{BC} — boundary condition vector
b - wingspan (of generating wing)
CL = lift coefficient
Ci = section lift coefficient
CN = normal force coefficient
Cn = section normal force coefficient
Cp = pressure coefficient
c - wing local chord
cavg = mean geometric chord
cf - chord of following wing

chord of generating wing
total number of grid cells
maximum number of cells at
boundary planes
last grid-cell indices for x, y,
and z
number of subvortex divisions
freestream velocity
flow velocity
position of / = NI grid plane
Cartesian coordinate system
vertical position of following wing,
relative to generating wing vortex
angle of attack
wing panel circulation vector
grid-cell dimensions
three-dimensional spreading
function
one-dimensional quadratic splines
vector potential for velocity
vorticity
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Introduction

T HE problem of the interaction between vortex wakes
and wings is very common in aircraft analysis and design.

Several aerodynamic computations require the accurate de-
scription of the geometry and strength of wing wakes. Ex-
amples include wing-vortex interaction due to short interval
airport takeoff, canard-wing interference, rotor analysis, and
propeller-wing interference.

A rapid computational approach that provides an accurate
description of vortex wakes while allowing close interactions
with lifting surfaces would be a useful design tool.

Vortex-lattice and panel methods are often used in prelim-
inary design, providing fast solutions with discretizations that
involve only surface panels. These have been adapted to han-
dle flexible wakes,1-2 but high induced velocities sometimes
create instabilities that limit the resolution of the wake or
surface geometry.

The vortex-in-cell (VIC) method uses singularities to de-
scribe vorticity distributions, but their induced velocities are
computed through finite difference solution of a Poisson equa-
tion. A vorticity spreading procedure, coupled with velocity
interpolation, removes infinite values and smoothes the ve-
locity field. The grid used for the Poisson solution is rectan-
gular and requires no geometry fitting. This method had its
origin in two-dimensional wake computations.3-4 It was later
extended to three dimensions5-6 and applied to problems in-
volving free shear layers and vortex-ring dynamics, simulating
turbulent mixing processes.

The present work applies the VIC method to the wing wake
roll-up problem, trying to combine the efficiency of the vor-
tex-lattice method for wings with the robustness of the VIC
formulation. It describes improvements on a method pre-
sented earlier,7 allowing the use of finer discretizations. Sev-
eral test cases are presented, for single wings and for wake-
wing interactions. Results are compared with experiments and
other methods.

Basic Equations and Numerical Model
Consider a system composed of one or more wings, sta-

tionary relative to each other, in low-subsonic, steady flow.
A Cartesian system of coordinates is fixed to one of the wings,
with the x axis in the direction of Ux.

In the incompressible flow limit, mass continuity yields a
kinematic condition to be obeyed by the flow: the velocity
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field u must be divergence-free. The governing equations are
linear, and allow the construction of a solution through the
superposition of fundamental, singular solutions.

A vortex-lattice model uses vortex segments as building
blocks. Under small perturbation conditions, wings can be
modeled by their mean surfaces. The lifting surfaces thus
created are covered with trapezoidal vortex rings. Steady wakes
emanating from separated edges are represented by vortex
lines, formed by successions of straight vortex segments.

For incompressible flows, the Kelvin-Helmholtz theorems
for vortex dynamics8 apply. Total vorticity must be conserved,
either by enforcing the conservation of circulation in the flow
or by assuring that the vorticity field, M = V x M, is also
divergence-free:

V c* = 0 (1)

In addition, free vortices should move with the local fluid
velocity, so as to remain force-free. Bound vortices on the
wing are subjected to forces created by the fluid motion.

Velocities for an incompressible flow can be obtained by
the vorticity distribution. A divergence-free velocity field is
created by making u = V x ^r, defining the vector potential,
ty. On the other hand, vector potential and vorticity are re-
lated by8

This relation yields three Poisson equations, one for each of
the vector potential components, with forcing terms given by
the vorticity components.

Vortex-in-Cell Method
Figure 1 presents a schematic of the VIC grid placed over

the wing and wake vortices (see also Fig. 3). The jc position
of the last grid plane, / = NI, is denoted by Xcvttoff. The
boundaries of the grid box are positioned so that they are at
least two grid-cells away from the vortex segments. The ex-
ception is the downstream boundary, which is crossed by the
wake. Downstream of this boundary, it is assumed that the
wake preserves its shape [i.e., its projection in the (yz) plane
remains the same], and is aligned with the freestream direc-
tion. The influence of a portion of this "downstream wake"
is taken into account by the fast Poisson solution, as explained
later.

The VIC method is composed of three basic steps. First, a
discrete description of the vorticity field over a regular mesh
is obtained. The next step involves the discretization of the
differential equation relating velocity (or vector potential) and
vorticity, and solution for u at the mesh points. Finally, values

grid box

for any point inside the grid can be computed by interpolation.
The method used here is based on that of Couet.5 6 It is
essentially the same as in Ref. 7 and is described in detail in
Ref. 9.

A spreading procedure provides the discrete vorticity rep-
resentation in the rectangular grid. In a finite volume fashion,
the vorticity <oijk represents an average of the vorticity con-
tained inside a grid cell. A three-dimensional spreading func-
tion </>(r) is applied to the concentrated vorticity along the
length of the vortex segments. This generates a line integral
for each segment, which can be approximated by Gauss-
Legendre quadratures. The spread vorticity field created by
the vortex segment of extremities A and B and circulation F
is given by

(3)

n is the number of quadrature points Pm used, and wm is a
set of dimensionless weights. </> is assembled using three one-
dimensional spreading functions, so that

~ xm)-<l>y(y - - zm) (4)

downstream wake
Fig. 1 Wing and wake vortices inside VIC computational grid box.

These component functions are quadratic splines based on
the grid size in their direction, and each spans three cell lengths.

The spreading function is applied to the quadrature points
at each vortex segment, and toAB is evaluated at the centers
of the neighboring grid cells. This fraction of the segment
vorticity is added to the previous content of the cell. In gen-
eral, each point spreads to 27 cells (3 in each direction). If
the vortex does not span more than one or two grid cells, two
point quadratures are usually sufficient. The spreading pro-
cedure has the important property of conserving total vortic-
ity.

In addition to the vortex segments inside the grid, the
spreading procedure should be applied to two vortex segments
(of length AJC) of the downstream wake.7-9 This guarantees
that the vorticity in plane / = NI represents correctly the cross
section of line vortices extending to jc — > oo.

The next step is the solution of the three Poisson equations
for vector potential components, to obtain values at the grid-
cell centers. This is done using a fast Poisson solver. Since
perturbations should vanish far from the wing- wake system,
an infinite domain solver must be employed. The algorithm
used here is an adaptation of the method by James.10 Each
Poisson equation can be viewed as relating the divergence of
a scalar potential (i.e., a vector potential component) to a
distribution of sources (a vorticity component distribution).
The scalar potential is divided into an interior and a screening
potential. The problem for the interior potential contains the
vorticity inside the grid and has Dirichlet boundary condi-
tions. It is solved by the application of fast sine transforms.
The operation count is of the order (kvM + k2M log2M),
where M is the total number of grid cells. The screening
potential is given by a hollow distribution of specially con-
structed sources or charges, and can be solved efficiently through
a convolution procedure. The charges, which exist only at the
boundary planes, are functions of the values for the interior
potential. A solution for the potential of a single source is
used in a sweep through the mesh, after manipulation of the
boundary charges by two-dimensional fast sine and cosine
transforms. The screening potential is finally obtained in tri-
ple-sine transformed form and added to the interior potential
before the final back-transformation. The operation count for
the convolution procedure is €(k3M + k4M' + k5M' Iog2m'),
where M ' is the maximum number of cells on the boundary
planes.

An artifice was added to this method to take into account
the influence of a portion of the wake downstream of the grid
box. Another convolution potential is created by superim-
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radial distance

Fig. 2 Tangential velocity along a radial direction for an infinite
vortex with circulation equal to 2 77.

posing the influences of a line of sources on x, from plane
i = NI to 2NL When convolution with this potential is applied
to the vorticity at plane NI, the effect is that of adding the
influence of a wake of length NIAx going downstream. The
crossflow shape of this wake is constant and is the shape at
i = NI.

After the values for vector potential are known, velocities
are computed by central, second-order differences.

The velocity at any point inside the grid can be determined
by interpolation. The same function used for spreading is
applied for interpolating the values uc at the cell centers. The
velocity at any point P = (;c, y, z) is given by

(5)

where the summation occurs for the 27 cells closest to P.
The spreading/interpolation combination introduces im-

plicitly a finite core for the vortex velocity field.7 This effective
core has a diameter (defined where velocity is maximum) of
about three grid-cell lengths (see Fig. 2). Notice that, close
to the core region, the interpolation does not recover the value
uc at the cell centers.

Wake Relaxation
The extremities of the vortex segments forming the wakes,

referred to as nodes, are constrained to remain in x = const
crossflow planes. When possible, these are chosen as the same
/ planes that contain the grid-cell centers, so that the segment
length in the x direction is AJC. The relaxation procedure is
analogous to unsteady calculations of wake evolution.11 After
the determination of the velocity field by the VIC method,
the velocities at all vortex nodes are computed. Then, nodes
at plane / are moved in the direction of their local velocity,
and the local time step is chosen so as to make them stop at
plane / + 1. Consider a wake vortex line. If the velocity at
node / is M, and Ar, = (rx)i+l — (rx)h then

h i _ rth i ~~ ' /

A/,- =

(6)

(7)

where t indicates the present wake geometry and t + 1 its
next shape. r7 is the position of a node on plane /. Notice that
Ar, is equal to AJC for most segments. This process is applied
simultaneously to all wake nodes. Convergence is achieved
when the maximum displacement among all the nodes falls
below a certain value.

Vortex-Lattice Model
In the current implementation, the vortex arrangement for

the lifting surfaces is based on a model by Truckenbrodt12

(see Fig. 3). Each wing element is trapezoidal, and is divided
into Nspan by Wchord panels. These are rectangular, and have
the same dimensions for each chordwise row.

Fig. 3 Wing panel and wake vortex geometries for a swept-back wing.

Force evaluation is performed by determining Cp at the
center of each panel and integrating. Therefore, only the
normal component of the wing force is computed.

The Kutta condition is enforced by specifying zero circu-
lation at the lattice trailing edges. Hence, the panels at this
position must have their trailing-edge segment of vorticity
canceled. This process determines the strength of the wake
vortices by conserving the total circulation. Side separation
can occur also, and in this case the side edge of the tip panels
must have their circulation canceled.

In order to allow fine wake discretizations without increas-
ing the number of panels, a subvortex technique was intro-
duced.13 Refer to the close-up in Fig. 3. At first, all wake
vortices originate at wing panel corners, and their strength is
determined by the Kutta condition. Then, the wake "strip"
between each pair of vortices is divided into Nsub equal parts,
creating Nsub - 1 subvortices. However, the new vortices take
their circulation from the original set, so that the circulation
for each original vortex is divided by Wsub. The strength of
the new vortices is linearly interpolated from the corrected
values for the original set. This refinement creates vortices
that violate the Kelvin- Helmholtz theorems by starting inside
the flow. The process is acceptable because these vortices are
used only as markers for the wake in the VIC method.

Solution Algorithm
After the wakes are relaxed, their new geometries invali-

date the boundary conditions in the wings, and the vortex-
lattice problem has to be solved again. This is done by as-
sembling the AIC matrix for the wing circulations with the
influence only of the wing panels. The influence of the wake
vortices on the control points is computed with the VIC method
and placed as an additional boundary condition vector. The
strengths F for the panels are then given by

L4/cwings.only]{r} = -
where the first BC vector includes normal velocities on panel
control points created by Ux, and the second includes normal
velocities created by the wake. This generates an iterative
procedure for wing circulation correction, which can be cou-
pled with the relaxation process. The wing panel circulations
are considered converged when the maximum variation is
smaller than a certain fraction of the maximum panel strength.

Therefore, after the establishment of a starting solution,
the convergence loop for the algorithm has two basic steps:

1) The wing circulation is corrected by computing wake
velocities using the VIC method only for the wake vorticity.

2) The wake is relaxed using velocities computed with the
VIC method for all vorticity.
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Results
Wake roll-up computations for a single wing aided in the

study of discretization issues. Problems with close interaction
between wakes and wings were studied next to evaluate the
adequacy of the method for such cases. Unless otherwise
stated, lengths were made nondimensional relative to the wing
chord (for multiple wing arrangements, the wing of greater
area was chosen).

Single Wing Analysis
The method seems to perform best when a basic guideline

concerning the VIC method is followed. The discretization
for the wake should place at least one vortex (preferably
several vortices) per grid cell along its surface. Wing discre-
tization should make the panel dimensions close to those of
the grid cells. As in the case of wakes, at least one panel
should exist per grid cell along the lifting surface. This re-
quirement is even more important when the subvortex tech-
nique is used.

A large number of wake vortices does not compromise
computational time, since this is controlled by the grid size.
On the other hand, a large number of panels creates a large
AlC, and may create variable storage problems. Although
this matrix is decomposed only once, the time necessary may
be equal to that of several VIC computations. Hence, it is
convenient to keep the number of panels low, which makes
their dimension comparable to that of the grid cell.

Figure 4a shows a crossflow-plane shape of the wake of an
AR = 1 rectangular wing at high angle of attack. The grid
used had cell dimensions equal to 0.035 x 0.035 x 0.035,
and the / = NI grid plane was at x — 1.5, measured from
the leading edge. The wing had 30 x 30 panels, Nsub = 10,
and side-edge separation was modeled. Notice that two turns
of the tip spiral were obtained without vortex scattering. The
"hook" in the roll-up center is typical of the presence of
vortices with a viscous-like core.14 Figure 4b shows the wake
shape obtained when Ay and Az were halved, without chang-
ing AJC. The wing panel length in the y direction was also
halved. Small-scale instabilities appeared along the wake, in-
dicating that the performance of the relaxation scheme was
affected. The relaxation process is a time-like integration,
with step size controlled by the wake segment length, which
is equal to AJC. As the discretization in the (yz) plane is in-
creased, the cell size in the x direction may need to be de-
creased in order to maintain the accuracy of the "time" ev-
olution process.

Figure 5 shows normal force results for the first discreti-
zation, compared with experimental data.15 Also shown are
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Fig. 4 Wake shape at A: = 1.5c for an AR = 1 rectangular wing at
a = 19.4 deg, computed with: a) 0.035 x 0.035 x 0.035 and b) 0.035
x 0.0175 x 0.0175 grid cells.
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Fig. 6 Wake shape at plane x = 5.0c for a rectangular wing of AR
= 8 at a = 10 deg. Comparison with results from Mittelman11 and
Yeh and Plotkin.16

values from a time-accurate wake roll-up method.11 That
method also used a wing vortex lattice and wake vortex seg-
ments, but displaced the wake using Biot-Savart law calcu-
lations. Agreement is good, although the present method
showed a tendency to overestimate the normal force through-
out the span. This is due to two factors. First, the subvortex
creation tends to decrease the wake downwash on the wing
control points, causing higher values for the wing panel cir-
culations. The other factor relates to the proximity of side-
edge wakes to wing panels. The wake influence on the control
points is decreased because of the smoothing of the velocity
field by the VIC method. This causes an increase in the wing-
tip loads and affects the span loading as well.

Wake roll-up for an AR = 8 rectangular wing is shown in
Fig. 6, compared again with results from Ref. 11. The values
from Ref. 16 were computed using a lifting-line model for the
wing and panels with linear distribution of vorticity on the
wake. Notice that the present computations used a much larger
number of vortices: there were 100 x 2 panels in the wing
(with no side-edge wake), with Wsub = 8, amounting to 400
vortices per semispan. The grid-cell size was 0.25 x 0.075 x
0.075, with Xcutoff = 14. The origin for x is at the wing trailing
edge. The VIC calculations provided a tighter roll-up, and
placed the tip vorticity slightly higher.

This case was also solved using a conventional vortex-lattice
roll-up method, in order to compare computational times.
This was a previous version of the present code, which com-
puted velocities using Biot-Savart law and introduced an ex-
ponential vortex-core model for each wake vortex segment.
For steady-state wakes, the roll-up process can be accelerated,
as explained by Maskew1 and Katz.2 Instead of moving all
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wake nodes simultaneously, one computes the displacements
for one crossflow plane and applies the same values for the
remaining planes in the downstream direction. One relaxation
iteration is completed when this is done for all planes, starting
with the first plane upstream. After the first iteration, the
wake already presents a large degree of roll-up, so that fewer
velocity computations are necessary to achieve a converged
wake. This acceleration technique is easy to implement when
velocities are computed using Biot-Savart law summation,

1.00
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0.00

- Cn, Present Method
- Cn, Biot-Savart Roll-Up

C., Experiment

0.00 0.25 0.50
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Fig. 7 Section normal force and lift distributions for a rectangular
wing, AR = 6.6, a = 12.44 deg. Experimental results are from
McAlister and Takahashi.17

but is not useful for the VIC method: since velocities are
obtained everywhere by the fast Poisson solver, it is better
just to move all wake segments at once.

Both methods used 200 x 2 panels on the wing and 200
vortices along the wake span. The rest of the parameters were
the same as described previously. The computational time for
the conventional method was 2.51 h in an IBM RS-6000/340
workstation. However, only 2 circulation corrections and 4
wake relaxations (with the acceleration technique described)
were necessary to achieve convergence, as opposed to 6 and
113, respectively, for the VIC method. The VIC computation
required 1.52 CPU hours. This indicates how the present VIC
implementation provides faster velocity computations, which
is important for wakes with large numbers of vortices. For
nonsteady wakes, where the acceleration technique cannot
be employed, the VIC method should present even greater
time savings.

Figure 7 contains the section normal force distribution for
a rectangular wing of AR = 6.6 at a = 12.44 deg. The VIC
method used a 0.1 x 0.066 x 0.066 cell for a 100 x 10 wing
with side-edge separation and Nsub = 8. This solution was
compared with that of the conventional Biot-Savart method,
which used a similar discretization and no subvortices. There
is reasonable agreement between the two computations. Once
again, it can be seen that the VIC method provided higher
loads throughout the span, especially at the tip. This problem
is reduced as discretization is increased. Also shown in this
plot are experimental data for section lift, from Ref. 17.
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Fig. 8 Experimental contours of total pressure loss compared with computed wake position for three crossflow planes. Experimental data from
Ref. 18. Rectangular wing, AR = 6.0, a = 8 deg.
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The wake roll-up for an AR = 6.0 rectangular wing at a
= 8 deg is described in Fig. 8. Wake shapes for three crossflow
planes are compared with contours for total pressure loss
obtained by Brune et al.18 The wing chord length was 12 in.
and the ( y , z) coordinates refer to the 8 x 12 ft test section.
The x coordinate has origin at the trailing edge. In the present
calculation, the tip vorticity is highly concentrated in the last
10% of the vortices. The present method, which implemented
side-edge separation, captured well the tip vortex in the prox-
imity of the trailing edge. The vertical displacement and over-
all shape of the wake show very good agreement with the
experimental results. The calculation used a 0.1 x 0.075 x
0.075 cell and 100 x 6 wing panels, and Nsub = 8.

Wake-Wing Close Interaction
El-Ramly et al.19 performed wind-tunnel measurements for

a two-wing, staggered configuration. The wing sizes simulated
a commercial transport aircraft generating a wake that dis-
turbed a small airplane. The experimental arrangement is
sketched in Fig. 9. The upstream wing had AR = 7.0, taper
ratio equal to 1/3, and was swept back 35 deg at the c/4 line.
It was mounted along the test section centerline. The down-
stream wing had AR = 7.5 and was rectangular, with a span
that was about 24% of the upstream wingspan. The smaller
wing had no incidence, and was placed between 2.5-5 up-
stream-wingspans from its trailing edge.

The computation presented used a 0.225 x 0.1 x 0.1 cell,
25 x 3 panels for each half of the upstream wing and for the
downstream wing, with no side-edge separation; Wsub = 8 and

TEST SECTION SI DEW ALL
BOUNDARY LAYER SUCTION AREA

20 x 30 in. TEST SFCTION

VORTEX-GENERATING WING
ONERA TRANSONIC CALIBRATION SECTION
AVERAGE CHORD 6 in.
ASPECT RATIO 7.0

FOLLOWING WING
NACA 642-01S
CHORD 1.33 in.
ASPECT RATIO 7.5

Fig. 9 Experimental arrangement for close interaction between tip
vortex and wing, from El-Ramly et al.19 (reproduced from Ref. 20).

i 1.25

£1.00
O

^0.75
O

0.50

0.25

O"
0.00

0.100 0.25 0.50

2y/b
0.75 1.00

Fig. 10 Normalized load distribution for upstream wing at a = 5
deg. Present method results are for normal force. Experimental results19
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Fig. 12 Variation of rolling moment of the downstream wing with
its vertical position. Results compared with experiment19 and com-
putations by VSAERO.20

^cutoff = 5.86, where b is the swept-wingspan, and the x origin
is at the root trailing edge.

The normal force distribution along the span for the up-
stream wing is compared in Fig. 10 with the experimental data
for lift at a = 5 deg, with very good agreement. The distri-
butions are normalized by the total coefficients and the av-
erage chord cavg. The differences at the root are due to errors
in representing the "kink" in sweep with the vortex-lattice
model.2 The load decrease reverses the sign of the wake vor-
tices at the root, which, although weak, produce a change in
the wake geometry in that region, as seen in Fig. 11. This
figure shows the rolled-up wake shapes at plane x = 5.86.
The downstream wing was 5.06 from the upstream one, and
its root was 0.0326 inboard of the upstream wingtip. Its ver-
tical distance from the test section centerline was —1.0 in.
Notice the smooth roll-up of the upstream wake, and the
distortion of the downstream wake as both interact.

The rolling moments induced in the downstream wing are
shown in Fig. 12, with upstream wing at a = 5 deg and
downstream wing at the same 0.0326 position. The present
method results are compared with the experimental data and
with computations from VSAERO.20 There is a shift between
the computed and experimental curves due to different ver-
tical positions of the upstream tip vorticity. This is partly due
to interference from the tunnel wall, which is only 0.426 from
the upstream wingtip, creating a strong image vortex. Other
than that, the shape and peak value obtained with the present
method agree very well with the experimental results. No
special care had to be exercised when the tip vorticity im-
pinged directly on the downstream wing, and the discretiza-
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tion was kept the same. The results from VSAERO, which
is a low-order panel method that allows wing relaxation, over-
predicted the rolling moment by a large margin.

Next, the geometry in Ref. 21 was analyzed (see Fig. 13).
It consisted of two wings in a cruciform arrangement. The
generating wing was placed at a = 12.6 deg. The leading edge
of the following wing was placed at two generating chords cg
from the trailing edge of the generating wing, and had no
incidence. Notice the difference in chord size between the
two wings. The position of the following wing was specified
relative to the position of the tip vortex of the upstream wake
for the generating wing alone. When the tip vortex position
at 2cg behind the generating wing was determined, the fol-
lowing wing was placed so that the vortex was at 25% of its
span. The vortex vertical displacement zv was given as a frac-
tion of the following wing chord cf and was positive above
the wing.

The orientation of the wings was changed for the compu-
tations, placing the generating wing parallel to y and the fol-
lowing wing in the vertical position. The present method used
a 0.085 x 0.075 x 0.075 cell size, 100 x 6 panels for the
upstream wing (side separation present), 60 x 6 for the down-
stream one, Nsub = 8 and ^cutoff = 4.25cg. The origin for x
is at the upstream wing trailing edge.

Figures 14 and 15 present the computed section normal
force distribution, compared with the experimental data and
with results from VSAERO.20 In the VSAERO computa-
tions, a small number of iterations for the relaxation proce-
dure was applied, and only for the upstream wake. The cases

FOLLOWING WING
NACA 0012
CHORD 3.9 in.
ASPECT RATIO 8.9

VORTEX-GENERATING WING
NACA 0015
CHORD 18 in.
ASPECT RATIO 5.4

7 BY 10 FT. TEST SECTION

Fig. 13 Experimental arrangement for close interaction between tip
vortex and wing, from McMillan et al.21 (reproduced from Ref. 20).
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Fig. 14 Section normal force distribution for following wing at po-
sition zjcg — —0.02. Results compared to those from experiment21
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Fig. 15 Same as Fig. 14, for zjcg = 0.73.
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Fig. 16 Wake shapes at various crossflow planes for following wing
atzv/cg = -0.02.

with strong wake-wing interaction would sometimes present
instabilities, even after careful discretization to avoid vortex-
panel proximity. For the present computations, it can be seen
that the results agree very well with the experiment. As in
the previous case, no special care was needed regarding dis-
cretization for close interaction cases, although the discreti-
zation was very fine. Rolled-up wake shapes at various cross-
flow planes for the case of zvlcg = -0.02 are shown in Fig.
16. For this computation, the relaxation step was executed 90
times (for tolerance of 0.01cg) and the circulation correction
53 times (for a tolerance of 0.5%), using a 65 x 129 x 33
grid.

Conclusions and Comments
A hybrid method composed of a VIC formulation for ve-

locity computation and a vortex-lattice model for wings was
applied with success to several one- and two-wing configu-
rations. The VIC method uses an infinite domain fast Poisson
solver and a subvortex technique. This technique allows an
increase in the wake discretization without change in the num-
ber of surface panels. The method performs best when wing
panel and grid-cell dimensions are comparable, so that the
grid truly represents vorticity layers. Normal forces and wake
shapes for single wings presented good agreement with ex-
periments and other calculations, although side-edge sepa-
ration required fine discretizations to produce accurate load
values. Forces and rolling moments induced on wings by up-
stream wakes were computed with good experimental agree-
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ment, without special concern over discretization for cases
with strong interaction.
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